Asintotas Verticales

Ejemplo N°1 - GeoGebra Hoja Dinámica

Ejemplo N°1

Este es un Applet de Java creado con GeoGebra desde www.geogebra.org – Java no parece estar instalado Java en el equipo. Se aconseja dirigirse a www.java.com 6 Agosto 2013, Creado con GeoGebra
Ejemplo N°2 - GeoGebra Hoja Dinámica

Ejemplo N°2

Este es un Applet de Java creado con GeoGebra desde www.geogebra.org – Java no parece estar instalado Java en el equipo. Se aconseja dirigirse a www.java.com 6 Agosto 2013, Creado con GeoGebra

  • Que Son Asintotas Verticales!

  • Asíntotas verticales: rectas perpendiculares al eje de las abscisas, de ecuación x = cte.
  • La recta x = c es una asíntota vertical de una función f(x) si se cumple alguna de las siguientes condiciones:
  • Las asíntotas verticales de una función son rectas verticales de la forma x=k. No hay restricciones en cuanto al número de asíntotas verticales que puede tener una función: hay funciones que no tienen asíntotas verticales, funciones que tienen sólo una, funciones que tienen dos y hasta funciones que tienen infinitas. Se calculan de la siguiente forma:
    Si \lim_{x \rightarrow k^-} f(x)=\pm \infty, entonces x=k es asíntota vertical para f(x) (por la izquierda de la misma si el límite ha dado -\infty y por la derecha si el límite ha dado +\infty).
    Si \lim_{x \rightarrow k^+} f(x)=\pm \infty, entonces x=k es asíntota vertical para f(x) (por la izquierda de la misma si el límite ha dado -\infty y por la derecha si el límite ha dado +\infty).
    Una de las conclusiones que se pueden sacar a partir de esto es la siguiente: en las asíntotas horizontales planteamos siempre los mismos límites y el resultado es el que nos dice sin existen o no; sin embargo en las verticales nosotros tenemos que aportar los valores de k para los cuales calcular los límites. Evidentemente debemos aportar puntos para los cuales sea factible la existencia de asíntota vertical (no es demasiado aconsejable probar con valores al azar).

No hay comentarios:

Publicar un comentario